Semana 11


Aprendo en Casa

Bienvenidos estudiantes ya estamos en otra semana más. Espero que cada uno de ustedes se encuentre bien de salud junto a sus respectivas familias. 

El tema a desarrollar la presente semana es sobre "Sistema de ecuaciones lineales". 

No se olviden revisar los enlaces que se comparten así como los vídeos que les puede servir de apoyo durante el desarrollo de sus actividades. 

Recuerden ir registrando todo en su Portafolio, el cuál se les pedirá en cualquier momento, organicen bien su portafolio sea este virtual o físico.

A continuación les dejo los enlaces de las actividades a realizarse:


Les vuelvo a dejar el enlace al Check. Los que todavía no ingresan deben hacerlo como parte de su labor como estudiantes, recuerden que el Check es un medio de apoyo y de refuerzo sobre los temas tratados. Empiecen desde la Ficha 01 en adelante.


Enlace para entrar directamente al tema en la Khan Academy:



Les dejo los siguientes vídeos para que les sirva de guía:






PREGUNTA RETADORA:

Por 5 adultos y 4 niños se paga S/.88 para entrar a un parque de diversiones. Si fueran 4 adultos y 6 niños se pagaría S/.90. ¿Cuál es el valor de cada entrada para niño y para adulto?


COMENTA TU RESPUESTA...

19 comentarios:

  1. Buenas tardes profesora, soy la alumna Astrid Celeste Flores Segura del 3° "A". Ya le envié a su correo la solución del problema del blog y también la actividad del Día 3 Semana 11. Esta es mi respuesta:
    SOLUCION:
    Consideré para la solución el Sistema de Ecuación Lineal por el Método de Reducción.
    DATOS:
    x = Valor de entrada para niño
    y = Valor de entrada para adulto

    Ecuaciones por el Método de Reducción:
    5y + 4x = 88 (1)
    4y + 6x = 90 (2)

    -Elijo eliminar “x” por lo cual multiplico la ecuación (1) por 6 y la ecuación (2) por -4
    -Al resolver el Sistema de Ecuación lineal por el Método de Reducción obtengo: y = 12
    -Reemplazo el valor de "y" en la ecuación (1)
    -Obtengo como resultado: x = 7
    RESPUESTA: El valor de cada entrada para niño es S/.7 y el valor de cada entrada para adulto es S/.12.

    ResponderEliminar
    Respuestas
    1. Hola Astrid, te felicito!!... Un buen trabajo y una muy buena explicación. Hay varios métodos para poder resolver situaciones de éste tipo yo sólo les puse dos vídeos... Es agradable siempre leer tus comentarios, continúa siempre hacia adelante!!... Saludos

      Eliminar
  2. Buenas noches profesora, soy la alumna Digna Cielo Victoria Poma Veliz del 3°"A". Ya le envié a su correo el desarrollo de la actividad de la Semana 11 (Día 3),Esta es mi respuesta:
    Solución:
    Consideré para la solución el Sistema de Ecuación Lineal por el Método de Reducción.
    Datos:
    x = Valor de entrada para niño
    y = Valor de entrada para adulto

    Ecuaciones por el Método de Reducción:
    5y + 4x = 88 (1)
    4y + 6x = 90 (2)

    -Decidí eliminar “x” por lo cual multiplico la ecuación (1) por 6 y la ecuación (2) por -4
    -Al resolver el Sistema de Ecuación lineal por el Método de Reducción obtengo: y = 12
    -Reemplazo el valor de "y" en la ecuación (1)
    -Obtengo como resultado: x = 7
    Respuesta: El valor de cada entrada para niño es S/.7 y el valor de cada entrada para adulto es S/.12.

    ResponderEliminar
    Respuestas
    1. Hola Digna, está bien el desarrollo... Dime, ¿qué otro método hubieras podido usar para resolver el problema?, ¿podrías compartir el procedimiento que uses?... Gracias

      Eliminar
  3. Buenos dias profesora soy el alumno Cristhofer Mallcco del 3ro A, esta es mi respuesta:

    5y + 4x = 88 (1)
    4y + 6x = 90 (2)
    "X" se elimina, multiplico la primera ecuación x6, y la segunda x-4, al resolver la ecuación en metodo de reduccion : y = 12.
    Reemplazo el valor de y en la primera ecuacion : x = 7

    Rpta: El valor de cada entrada para niño es s/ 7.00 y para adulto es de s/ 12.00

    ResponderEliminar
    Respuestas
    1. Hola Cristhofer, muy bien... ¿Qué otro método hubieras podido usar para desarrollar el problema?... Cuídate

      Eliminar
  4. buenos días profesora, soy el alumno Joshua Dominguez del 3ro A y esta es mi respuesta:

    x = a valor de entrada para niño
    y = a valor de entrada para adulto

    1. 5y + 4x = 88

    2. 4y + 6x = 90

    RPTA: el valor de la entrada para niño es S/.7 y el valor de la entrada para adulto es S/.12
    GRACIAS

    ResponderEliminar
    Respuestas
    1. Hola Joshua, me parece bien, ¿podrías desarrollarlo por el método de sustitución?, quisiera que nos compartas el desarrollo para que veamos cómo es de diferente el procedimiento... Gracias

      Eliminar
  5. Buenas tardes profesora, soy la alumna Victoria Jaccya del 3"A".
    x = valor de adultos
    y = valor de niños
    1. 5x+4y=88 6x) 5x+4y=88 30x + 24y= 528
    2. 4x+6y=90 4x) 4x+6y=90 16x + 24y= 360
    Eliminamos 24y, nos queda 14x = 168 x=12
    1. 5x + 4y=88 5(12) + 4y= 88 60 + 4y = 88 4y= 28 y= 7
    Rpta: el valor de la entrada para niño es S/.7 y el valor de la entrada para adulto es S/.12. gracias.

    ResponderEliminar
    Respuestas
    1. Hola Victoria, te felicito!!... Una observación en la ecuación 2 lo multiplicaste por (-4), nos has mostrado tu procedimiento, gracias por compartir y nuevamente felicitarte por el buen trabajo realizado... Saludos

      Eliminar
  6. Buenas Noches profesora soy la alumna Marjorie Raquel García Huamán del 3ro a.
    5y + 4x = 88
    4y + 6x = 90
    Elimino (x) multiplicó la ecuación (1 )por 6 y la (2) x-4
    Resuelvo el Sistema de Ecuación lineal por el Método de Reducción y se obtiene: y = 12
    Reemplazo el valor de (y) en la ecuación 1
    Se obtiene como resultado x=7
    RPTA:Cada entrada para un niño esta s/.7 y para un adulto esta s/.12.

    ResponderEliminar
    Respuestas
    1. Hola Marjorie, muy bien aunque me hubiera gustado que trabajes otro procedimiento diferente al de tus compañeros... Saludos

      Eliminar
  7. Buenos días profesora soy la alumna Karen Corrales Fernandez del 3°A
    x = valor de adultos y = valor de niños
    Entonces...
    5x+4y=88
    4x+6y=90
    Rpta: el valor de la entrada para niño es de valor deS/.7 y la entrada para adulto es S/.12.

    ResponderEliminar
    Respuestas
    1. Hola Karen, es correcta la respuesta pero la siguiente vez espero me puedas mostrar el desarrollo para ver el procedimiento que usas... Saludos

      Eliminar
  8. Buenas tardes profesora, soy la alumna Nicole Cabrera Mendoza 3ro A
    Use el método de reducción:
    X=adultos Y=niños

    solución...
    5x+4y=88 (x6) = 30x+24y=528 "1"
    4x+6y=90 (x4) = 16x+24y=360 "2"
    eliminamos 24y y resolvemos lo que deja la ecuación:
    14x=168
    X=168/14
    X=12
    ahora reemplazamos X:
    5x+4y=88
    5(12)+4y=88
    60+4y=88
    4y=88-60
    4y=28
    Y=28/4
    y=7
    rpt: la entrada del adulto cuesta $7 y la entrada del niño vale $12
    gracias.
    PDT: intente con el otro metodo pero es muy "dificil"

    ResponderEliminar
    Respuestas
    1. Hola Nicole, una observación la segunda ecuación es por -4... Te felicito por el buen desarrollo del problema muy bien detallado!!... Gracias por compartir la secuencia de pasos... Saludos

      Eliminar
  9. Buenas tardes soy la alumna Adriana Alfaro del 3ro "A"

    x=adultos
    y=niños

    1. 5x+4y=88
    2. 4x+6y=90

    Desarrollamos:
    (6)5x+4y=(6)88 --> 30x+24y=528
    4)4x+6y=(4)90 --> 16x+24y=360

    Eliminamos 24y (porque se repite)
    14x = 168
    x = 168/14
    x = 12

    Remplazamos:
    5x + 4y =88
    5(12) + 4y =88
    60 + 4y =88
    4y =88 - 60
    4y = 28
    y = 28/4
    y = 7

    RESPUESTA: la entrada para niños es de s/.7 y para adultos cuesta s/.12.

    GRACIAS

    ResponderEliminar
  10. Hola Adriana, una observación en la segunda ecuación entiendo lo has multiplicado por -4 y cuando dices:

    Eliminamos 24y (porque se repite) ----> Se elimina por lo siguiente:

    (6) 5x+4y = (6) 88 --> 30x+24y= 528
    (-4)4x+6y = (-4)90 --> -16x-24y=-360
    --------------
    14x = 168

    Saludos...

    ResponderEliminar
  11. Buenas noches profesora, soy la alumna Treyci Ariana Cusquisivan Rengifo del 3°"A".Esta es mi respuesta:
    Solución:
    Consideré para la solución el Sistema de Ecuación Lineal por el Método de Reducción.
    Datos:
    x = Valor de entrada para niño
    y = Valor de entrada para adulto

    Ecuaciones por el Método de Reducción:
    5y + 4x = 88 (1)
    4y + 6x = 90 (2)

    -Decidí eliminar “x” por lo cual multiplico la ecuación (1) por 6 y la ecuación (2) por -4
    -Al resolver el Sistema de Ecuación lineal por el Método de Reducción obtengo: y = 12
    -Reemplazo el valor de "y" en la ecuación (1)
    -Obtengo como resultado: x = 7
    Respuesta: El valor de cada entrada para niño es S/.7 y el valor de cada entrada para adulto es S/.12.

    ResponderEliminar